Tecnologías de Control de Emisiones Para Motores Diesel

18 de septiembre del 2007

Asociación de Fabricantes de Controles de Emisiones (MECA) www.meca.org www.dieselretrofit.org

MECA Background

- Fundada en 1976 para servir como vocero técnico para la industria de control de emisiones de fuentes móviles. (54 compañías miembros)
- Los miembros tienen más de 35 años de experiencia y un record comprobable de éxito en el desarrollo y manufactura de tecnologías de control de emisiones.
- Los miembros cubren un diverso rango de tecnologías de control de emisiones para motores/vehículos nuevos y en existencia:
 - Convertidores catalíticos (de todos combustibles)
 - Filtros de partículas
 - Componentes y sistemas de integración del escape
 - Sensores
- Puede encontrar información sobre tecnologías de control de emisiones en dos páginas en la red:
 - www.meca.org
 - www.dieselretrofit.org
 - Contacto: Dr. Joe Kubsh (Director Ejecutivo) en Washington, D.C. (Teléfono: 202-296-4797, e-mail: jkubsh@meca.org)

Contenido

- Resumen Sobre Tecnologías de Adaptación para el Control de Emisiones
- Ingeniería de Aplicaciones de Adaptación
- Instalación de Dispositivos de Adaptación
- Mantenimiento de los Filtros de Partículas

Resumen Sobre Tecnologías de Adaptación para el Control de Emisiones

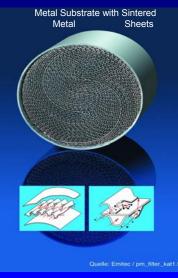
Estrategias Para Reducir las Emisiones de Motores Diesel en Uso

- Adaptar instalar dispositivos de control de emisiones verificados en motores existentes
- Cambiar de Combustible
- Reparar/Reconstruir
- "Repower"
- Reemplazar

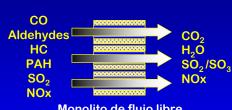
Los DPFs con Regeneración de Partículas Activa Están Disponibles para Adaptaciones

- Adecuados para aplicaciones de carreteras y fuera de carreteras con temperaturas del escape bajas, incluyendo equipo de construcción, locomotoras y motores marinos
- Ejemplo: Filtro de flujo a través de paredes, sin catalizador, con regeneración eléctrica
- Ejemplo: Filtro de flujo a través de paredes, sin catalizador, con quemador de combustible

Monitores de presión del mofle/Colectores de Datos


- Monitores de presión ahora con nuevas funciones
 - Capacidad extendida de colección de datos (1-2 años)
 - Presión y temperatura
 - Exhibición de luces multiples para indicar fallas en el sistema, advertencias y condiciones de alarma
 - Monitoreo en tiempo real
- Los sistemas cuentan con un software que permite el análisis de datos

Nuevas Tecnologías de Filtración de Flujo Libre Para Adaptaciones Diesel



- 50-75% de reducción de PM (ARB Nivel 2)
- Puede ser catalizado o usarse con un Catalizador de Oxidación (DOC)
- Se puede usar en motores más viejos
- Resistente a bloqueos
- No requiere limpieza de cenizas debido a su estructura abierta

Catalizadores de Oxidación

Catalizadores de Oxidación

Monolito de flujo libre Con capa catalítica

- 25-40% de reducción de PM oxidación de PM "soluble")
- Gran reducción de tóxicos
- Los DOC se han adaptado a vehículos de carretera y fuera de carretera por mas de 30 años
- De aplicación casi universal >1 millón de adaptaciones alrededor del mundo
- Decenas de Millones de Aplicaiones de OE

La Ventilación Cerrada del Cárter (CCV) Puede Proveer Control Adicional de PM

- La mayoría de los motores diesel existentes ventilan las emisiones del cárter directamente a la atmósfera
- La reducción de PM del cárter provistas por tecnologías de CCV tiene un rango de 5 a 10%
- Los CCVs dirigen el aire filtrado de regreso a la toma de aire del motor; el aceite lubricante regresa al colector de aceite

El Programa Piloto de Adaptaciones em la Ciudad de México confirmó el Buen Desempeño de Adaptaciones en 20 Camiones Urbanos

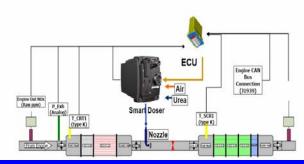
- La EPA de los EE.UU. Fue uno de los patrocinadores del proyecto
- El proyecto concluyó a finales del 2006
- Camiones de modelo 1991, de inyección mecánica, fueron adaptados con DOCs y combustible bajo en azufre (15 ppm S max.)
 - 20-30% en reducción de PM, 50-70% en reducción de CO
- Camiones de modelo 2001, de inyección electrónica, fueron adaptados con Filtros de Partículas (DPFs) y diesel bajo en azufre
 - 90% en reducción de PM, 90% en reducción de CO

Nuevas Soluciones Integradas Para Adaptaciones con Reducciones Combinadas de NOx/PM

- Catalizador de NOx + DPF
- Catalizador de Reducción Catalítica Selectiva de Urea (SCR) + DPF
- Recirculación de Gas del Escape de Baja Presión (EGR) + DPF
- Combustible Diesel Emulsionado + DOC (o DPF)

Catalizador de NOx + DPF

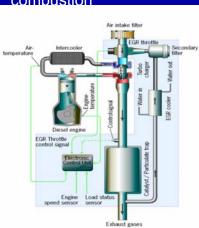
 Con el catalizador de Nox, se utiliza combustible diesel como reductor



Catalizador de NOx + DPF (25% de reducción de NOx)

- Con el catalizador SCR, se utiliza una solución de urea y agua
- El DOC+SCR est ► 0 verificado para aplicaciones limitadas fuera de carreteras; se esperan verificaciones adicionales para SCR para motores de uso en carreteras y fuera de carreteras

Catalizador SCR de Urea + DPF (60+% de reducción de NOx)


Filtro

SCR

EGR de Baja Presión + DPF

 El gas del escape, una vez limpio, es recirculado a la toma del aire del motor para enfriar la temperatura de combustión

EGR de Baja Presión + DPF (40-50% de reducción de NOx)

Combustible Diesel Emulsionado + DOC (o DPF)

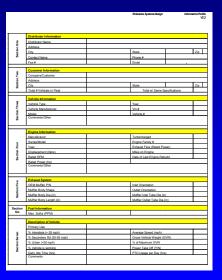
 Una emulsión de combustible+agua reduce la temperatura de combustión del motor y mejora la mezcla de aire/combustible

Combustible Diesel Emulsionado + DOC (15-40% de reducción de NOx)

Consideraciones Técnicas Clave Para Proyectos de Adaptacion Exitosos

- Ingeniería de la Aplicación designar la tecnología adecuada para el vehículo o equipo
 - El vehículo debe tener un buen mantenimiento antes de que se considere para ser adaptado
- Instalación profesional adecuada
- Mantenimiento el vehículo/equipo y el dispositivo de adaptación pueden requerir inspecciones frecuentes y mantenimiento
- Monitores en los vehículos proveen información importante al usuario sobre su desempeño
- Las Adaptaciones Exitosas Requieren un Esfuerzo Cooperativo Entre los Dueños de las Flotas, Operadores y Proveedores de Tecnologías

Ingeniería de la Aplicación de Adaptación



Definición de la Oportunidad

- Perfil de Información/Documentación
- Análisis de la Flota

Escape

- Motor/Vehículo/Marca/Modelo/ Año
- Tipo de Motor/ConfiguraciónDetalles del Sistema de
- Partes Necesarias Para Montar el Dispositivo
- Historial de Mantenimiento

Elección de la Tecnología de Control

- Revisión de la Lista de Verificación del ARB (www.arb.ca.gov/diesel/verdev/verdev.htm)
 - Tecnologías Verificadas de Nivel 1 (≥ 25% reducción de PM)
 - Tecnologías Verificadas de Nivel 2 (≥ 50% reducción de PM)
 - Tecnologías Verificadas de Nivel 3 (≥ 85% reducción de PM)
- Revisión de la Mejor Tecnología de Control Disponible (BACT)
 - Seleccionar la tecnología con el nivel más alto de reducción de PM disponible (Nivel 3, 2, o 1) que esté verificada/aprobada para familias de motor y condiciones de operación específicas
- Determinar la Temperatura del Escape/ Requisitos del Ciclo del Motor
 - Determinar el nivel la tecnología de control de acuerdo a la operación del vehículo
 - Determinar las necesidades de captura de datos para la temperatura del escape y el ciclo del motor

Determinar la Temperatura del Escape/Ciclo del Motor

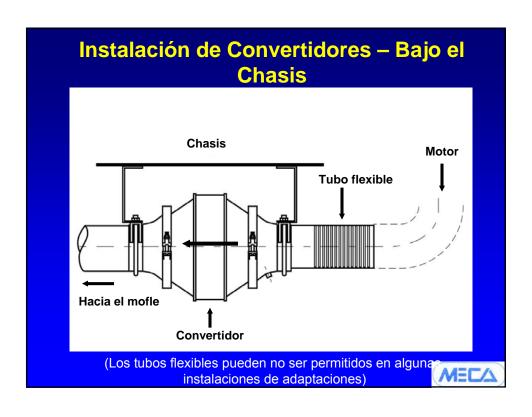
- Proveer Capacidad Para la Colección de Datos
 - Kit de Colección de Datos
 - Partes
 - Manual de Instalación/Operación
 - Software
 - Instrucciones/Hoja de Datos
- Completar la Colección de Datos
 - Usualmente se toman muestras de temperatura con frecuencias de 2-5 segundos sobre múltiples días de operación
 - Los datos se capturan y se proveen al proveedor de la tecnología de control

Determinar la Temperatura del Escape/Requisitos del Ciclo del Motor Datos Brutos de Temperatura Se analizan y se determinan los criterios apropiados de temperatura Respuesta Documentada para el Cliente

Retos Para Adaptaciones Empleadas Fuera de Carreteras

- Emisiones más altas que lo motores de carga pesada de carreteras (no controladas previo a 1996)
- Equipos y motores más diversos que los usados en carreteras
 - Equipo más viejo
 - Rango más amplio de caballaje
 - Estabilidad del equipo
- Ambiente de operación más riguroso(vibraciones, polvo, superficies desniveladas)
 - Pueden requerir el uso extenso de aisladores de vibraciones de alto grado, específicamente en equipo que se maneja sobre vías

Retos Para Adaptaciones Empleadas Fuera de Carreteras

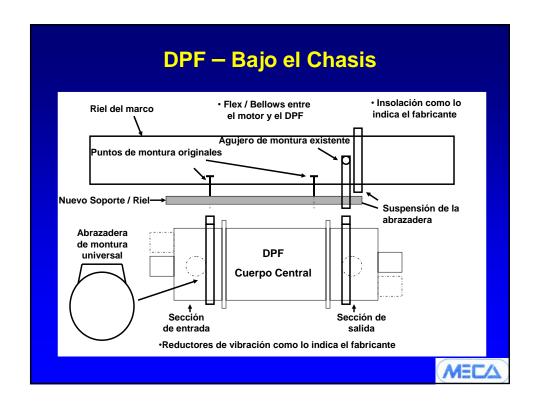

- Limitaciones en su presentación
 - Mantener la visibilidad del conductor
- Disponibilidad de combustible limpio
 - El diesel bajo en azufre permite el máximo control de PM
- Mayor necesidad de mantenimiento de equipo preventivo
 - Filtros de aire, inyectores y turbocargadoresInspección básica y mantenimiento de instalaciones
- Debe estar conciente de no tomar atajos para adaptar el equipo rápidamente

Instalación de Dispositivos de Adaptación

Mofles Convertidores

 Ajuste directo, simplemente se instala en lugar del mofle original

> Debe tener todas las funciones del mofle original Ahorra trabajo, reduce el número de partes y asegura un ajuste correcto


 Los mofles convertidores genéricos pueden ser utilizados con kit de instalación especializado para la pipa de escape

 Puede ser difícil obtener pipas de repuesto

Mantenimiento de los Filtros de Partículas

Mantenimiento de los Filtros de Partículas

- Las partículas colectadas en el filtro deben ser quemadas periódicamente (como un horno de autolimpieza)
 - Si ocurren eventos de insuficiencia de temperaturas altas, las partículas se pueden acumular en el DPF y requieren ser removidas físicamente
- La ceniza inorgánica no se quema y se acumulará en el DPF a lo largo del tiempo
 - La ceniza debe limpiarse periódicamente para prevenir daños al substrato del filtro y un incremento en la presión del escape
 - Fuentes de ceniza incluyen aditivos de lubricantes y metales desgastados del motor

Mantenimiento de los Filtros de Partículas

- Inspeccione la instalación y haga las reparaciones necesarias soportes, abrazaderas, reductores de vibraciones, etc.
- •Inspeccione el monitor de presión del escape y haga cualquier mantenimiento específicado
- Los filtros no son libres de mantenimiento todos los filtros de partículas requieren mantenimiento periódico sin importar su marca o el millaje u oras de operación del vehículo
- Se debe tener cuidado al manejar un filtro para protegerlo de cualquier daño y para proteger al personal

Tipo de Vehículo	Horas de Operación	Millas	Anual
Flotas Urbanas, de Desechos Sólidos y Camiones Escolares	1000-1500	20,000 to 30,000	1-2
Camiones de Servicio y Viajes Cortos	1500	20,000 to 50,000	1
Flotas de Repartos y Fuera de Carreteras	1000-1500		1

Estaciones de Limpieza de Filtros

- La estación de limpieza de filtros se diseñó para tener una regeneración segura o dar mantenimiento a cualquier filtro
- Una manera efectiva de remover ceniza y mejorar la durabilidad del filtro

- Estación Típica de Limpieza de Filtros
 - Sistema de tres pasos de aspirado-calentamiento-aspirado
 - El sistema de aspirado remueve las partículas y la ceniza de los filtros
 - No permite que los contaminantes escapen al aire
 - Limpia filtros de cordierita y carburo de silicio entre 3 y 20 litros

Otros Aspectos de Mantenimiento de Adaptaciones Diesel

- Inspecciones periódicas deben incluir los soportes de las monturas y abrazaderas; presencia de partículas en el escape del vehículo con un DPF; condensación en tubos asociados con los sensores/monitores de presión usados con los DPFs
- DOCs
 - Generalmente no requieren mantenimiento; se recomiendan inspecciones periódicas
- Filtros del Cárter
 - Se requiere un cambio de filtro en cada intervalo de cambio de aceite
- EGR de Baja Presión
 - Inspecciones Regulares
 - El filtro secundario necesita reemplazarse usualmente intervalos de 6-12 meses

Resumen de Adaptaciones Diesel

- Una variedad de tecnologías de adaptación han sido verificadas por la EPA de EE.UU.. y la agencia del ARB de California para reducir emisiones existentes de PM y NOx provenientes de motores existentes de uso en carreteras y fuera de carreteras
- Existe una experiencia significativa con tecnologías de adaptación para vehículos de uso en carreteras y esta experiencia esta en crecimiento para muchas aplicaciones de uso fuera de carreteras
- La ingeniería de las aplicaciones es un paso necesario para determinar la solución de adaptación adecuada para el vehículo

MECA